skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cossu, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by recent work on the use of topological methods to study collections of rings between an integral domain and its quotient field, we examine spaces of subrings of a commutative ring, endowed with the Zariski or patch topologies. We introduce three notions to study such a space : patch bundles, patch presheaves and patch algebras. When is compact and Hausdorff, patch bundles give a way to approximate with topologically more tractable spaces, namely Stone spaces. Patch presheaves encode the space into stalks of a presheaf of rings over a Boolean algebra, thus giving a more geometrical setting for studying . To both objects, a patch bundle and a patch presheaf, we associate what we call a patch algebra, a commutative ring that efficiently realizes the rings in as factor rings, or even localizations, and whose structure reflects various properties of the rings in . 
    more » « less